Swine influenza


Swine influenza, also called pig influenzaswine fluhog flu and pig flu, is an infection by any one of several types of swine influenza virusSwine influenza virus (SIV) or S-OIV (swine-origin influenza virus) is any strain of the influenza family of viruses that is endemic in pigs.[2] As of 2009, the known SIV strains include influenza C and the subtypes of influenza A known as H1N1H1N2H3N1,H3N2, and H2N3.
Swine influenza virus is common throughout pig populations worldwide. Transmission of the virus from pigs to humans is not common and does not always lead to human flu, often resulting only in the production of antibodies in the blood. If transmission does cause human flu, it is called zoonotic swine flu. People with regular exposure to pigs are at increased risk of swine flu infection. The meat of an infected animal poses no risk of infection when properly cooked.
During the mid-20th century, identification of influenza subtypes became possible, allowing accurate diagnosis of transmission to humans. Since then, only 50 such transmissions have been confirmed. These strains of swine flu rarely pass from human to human. Symptoms of zoonotic swine flu in humans are similar to those of influenza and of influenza-like illness in general, namely chillsfeversore throat,muscle pains, severe headachecoughingweakness and general discomfort.
In August 2010 the World Health Organization declared the swine flu pandemic officially over.[3]

Contents

[edit]Classification

Of the three genera of influenza viruses that cause human flu, two also cause influenza in pigs, with influenza A being common in pigs andinfluenza C being rare.[4] Influenza B has not been reported in pigs. Within influenza A and influenza C, the strains found in pigs and humans are largely distinct, although because of reassortment there have been transfers of genes among strains crossing swine, avian, and human species boundaries.

[edit]Influenza C

Influenza C viruses infect both humans and pigs, but do not infect birds.[5] Transmission between pigs and humans have occurred in the past.[6] For example, influenza C caused small outbreaks of a mild form of influenza amongst children in Japan[7] and California.[7] Because of its limited host range and the lack of genetic diversity in influenza C, this form of influenza does not cause pandemics in humans.[8]

[edit]Influenza A

Swine influenza is known to be caused by influenza A subtypes H1N1,[9] H1N2,[9] H2N3,[10] H3N1,[11] and H3N2.[9] In pigs, three influenza A virus subtypes (H1N1, H1N2, and H3N2) are the most common strains worldwide.[12] In the United States, the H1N1 subtype was exclusively prevalent among swine populations before 1998; however, since late August 1998, H3N2 subtypes have been isolated from pigs. As of 2004, H3N2 virus isolates in US swine and turkey stocks were triple reassortants, containing genes from human (HA, NA, and PB1), swine (NS, NP, and M), and avian (PB2 and PA) lineages.[13]

[edit]Surveillance

Although there is no formal national surveillance system in the United States to determine what viruses are circulating in pigs,[14] there is an informal surveillance network in the United States that is part of a world surveillance network.
Veterinary medical pathologist, Tracey McNamara, set up a national disease surveillance system in zoos because the zoos do active disease surveillance and many of the exotic animals housed there have broad susceptibilities. Many species fall below the radar of any federal agencies (including dogs, cats, pet prairie dogs, zoo animals, and urban wildlife), even though they may be important in the early detection of human disease outbreaks.[15] [16]

[edit]History

Swine influenza was first proposed to be a disease related to human flu during the 1918 flu pandemic, when pigs became sick at the same time as humans.[17] The first identification of an influenza virus as a cause of disease in pigs occurred about ten years later, in 1930.[18] For the following 60 years, swine influenza strains were almost exclusively H1N1. Then, between 1997 and 2002, new strains of three different subtypes and five different genotypes emerged as causes of influenza among pigs in North America. In 1997–1998, H3N2 strains emerged. These strains, which include genes derived by reassortment from human, swine and avian viruses, have become a major cause of swine influenza in North America. Reassortment between H1N1 and H3N2 produced H1N2. In 1999 in Canada, a strain of H4N6 crossed the species barrier from birds to pigs, but was contained on a single farm.[18]
The H1N1 form of swine flu is one of the descendants of the strain that caused the 1918 flu pandemic.[19][20] As well as persisting in pigs, the descendants of the 1918 virus have also circulated in humans through the 20th century, contributing to the normal seasonal epidemics of influenza.[20] However, direct transmission from pigs to humans is rare, with only 12 recorded cases in the U.S. since 2005.[21] Nevertheless, the retention of influenza strains in pigs after these strains have disappeared from the human population might make pigs a reservoir where influenza viruses could persist, later emerging to reinfect humans once human immunity to these strains has waned.[22]
Swine flu has been reported numerous times as a zoonosis in humans, usually with limited distribution, rarely with a widespread distribution. Outbreaks in swine are common and cause significant economic losses in industry, primarily by causing stunting and extended time to market. For example, this disease costs the British meat industry about £65 million every year.[23]

[edit]1918 pandemic in humans

The 1918 flu pandemic in humans was associated with H1N1 and influenza appearing in pigs;[20] this may reflect a zoonosis either from swine to humans, or from humans to swine. Although it is not certain in which direction the virus was transferred, some evidence suggests that, in this case, pigs caught the disease from humans.[17] For instance, swine influenza was only noted as a new disease of pigs in 1918, after the first large outbreaks of influenza amongst people.[17] Although a recent phylogenetic analysis of more recent strains of influenza in humans, birds, and swine suggests that the 1918 outbreak in humans followed a reassortment event within a mammal,[24] the exact origin of the 1918 strain remains elusive.[25] It is estimated that anywhere from 50 to 100 million people were killed worldwide.[20][26]

[edit]1976 U.S. outbreak

On February 5, 1976, in the United States an army recruit at Fort Dix said he felt tired and weak. He died the next day and four of his fellow soldiers were later hospitalized. Two weeks after his death, health officials announced that the cause of death was a new strain of swine flu. The strain, a variant of H1N1, is known as A/New Jersey/1976 (H1N1). It was detected only from January 19 to February 9 and did not spread beyond Fort Dix.[27]
U.S. president Ford receives swine flu vaccination
This new strain appeared to be closely related to the strain involved in the 1918 flu pandemic. Moreover, the ensuing increased surveillance uncovered another strain in circulation in the U.S.:A/Victoria/75 (H3N2) spread simultaneously, also caused illness, and persisted until March.[27]Alarmed public-health officials decided action must be taken to head off another major pandemic, and urged President Gerald Ford that every person in the U.S. be vaccinated for the disease.[28]
The vaccination program was plagued by delays and public relations problems.[29] On October 1, 1976, immunizations began and three senior citizens died soon after receiving their injections. This resulted in a media outcry that linked these deaths to the immunizations, despite the lack of any proof that the vaccine was the cause. According to science writer Patrick Di Justo, however, by the time the truth was known—that the deaths were not proven to be related to the vaccine—it was too late. "The government had long feared mass panic about swine flu—now they feared mass panic about the swine flu vaccinations." This became a strong setback to the program.[30]
There were reports of Guillain-Barré syndrome, a paralyzing neuromuscular disorder, affecting some people who had received swine flu immunizations. Although if a link exists is still not clear, this syndrome may be a rare side-effect of influenza vaccines. As a result, Di Justo writes that "the public refused to trust a government-operated health program that killed old people and crippled young people." In total, 48,161,019 Americans, or just over 22% of the population, had been immunized by the time the National Influenza Immunization Program(NIIP) was effectively halted on December 16, 1976.[31] [32]
Overall, there were 1098 cases of Guillain-Barré Syndrome (GBS) recorded nationwide by CDC surveillance, 532 of which occurred after vaccination and 543 before vaccination.[33] There are about one to two cases of GBS per 100,000 people every year, whether or not people have been vaccinated.[34] The vaccination program seems to have increased this normal risk of developing GBS by about to one extra case per 100,000 vaccinations.[34]
The CDC states that most studies on modern influenza vaccines have seen no link with GBS,[34][35][36] Although one review gives an incidence of about one case per million vaccinations,[37] a large study in China, reported in the NEJM covering close to 100 million doses of H1N1 flu vaccine found only eleven cases of Guillain-Barre syndrome, which is lower than the normal rate of the disease in China; "The risk-benefit ratio, which is what vaccines and everything in medicine is about, is overwhelmingly in favor of vaccination."[38]

[edit]1988 zoonosis

In September 1988, a swine flu virus killed one woman and infected others. 32-year old Barbara Ann Wieners was eight months pregnant when she and her husband, Ed, became ill after visiting the hog barn at a county fair in Walworth County, Wisconsin. Barbara died eight days later, after developing pneumonia.[39] The only pathogen identified was an H1N1 strain of swine influenza virus.[40] Doctors were able to induce labor and deliver a healthy daughter before she died. Her husband recovered from his symptoms.
Influenza-like illness (ILI) was reportedly widespread among the pigs exhibited at the fair. Of the 25 swine exhibitors aged 9 to 19 at the fair, 19 tested positive for antibodies to SIV, but no serious illnesses were seen. The virus was able to spread between people, since 1-3 health care personnel who had cared for the pregnant woman developed mild influenza-like illnesses, and antibody tests suggested that they had been infected with swine flu. However, there was no community outbreak.[41][42]

[edit]1998 US outbreak in swine

In 1998, swine flu was found in pigs in four U.S. states. Within a year, it had spread through pig populations across the United States. Scientists found that this virus had originated in pigs as a recombinant form of flu strains from birds and humans. This outbreak confirmed that pigs can serve as a crucible where novel influenza viruses emerge as a result of the reassortment of genes from different strains.[43][44][45] Genetic components of these 1998 triple-hybrid stains would later form six out of the eight viral gene segments in the 2009 flu outbreak.[46][47][48][49][50]

[edit]2007 Philippine outbreak in swine

On August 20, 2007, the Department of Agriculture officers investigated the outbreak (epizootic) of swine flu in Nueva Ecija and CentralLuzon, Philippines. The mortality rate is less than 10% for swine flu, unless there are complications like hog cholera. On July 27, 2007, the Philippine National Meat Inspection Service (NMIS) raised a hog cholera "red alert" warning over Metro Manila and 5 regions of Luzon after the disease spread to backyard pig farms in Bulacan and Pampanga, even if these tested negative for the swine flu virus.[51][52]

[edit]2010 Northern Ireland outbreak in swine

Since November 2010, there have been 14 reported deaths as a result of swine flu in Northern Ireland. The majority of the victims were reported to have pre-existing health conditions which had lowered the patients' immune system. This closely corresponds to the 19 patients that had died in the year prior due to swine flu where 18 of the 19 were determined to have lowered immune systems. Because of this, many mothers whom have just given birth are strongly encouraged to get a flu shot because their immune systems are vulnerable. Also, studies have shown that people between the ages of 15 and 44 have the highest rate of infection. Although most people now recover, having any conditions that lower ones immune system increases the risk of having the flu become potentially lethal. In Northern Ireland now, approximately 56% of all people under 65 that are entitled to the vaccine have gotten the shot and the outbreak is said to be under control.[53]

[edit]Transmission

[edit]Transmission between pigs

Influenza is quite common in pigs, with about half of breeding pigs having been exposed to the virus in the US.[54] Antibodies to the virus are also common in pigs in other countries.[54]
The main route of transmission is through direct contact between infected and uninfected animals.[12] These close contacts are particularly common during animal transport. Intensive farming may also increase the risk of transmission, as the pigs are raised in very close proximity to each other.[55][56] The direct transfer of the virus probably occurs either by pigs touching noses, or through dried mucus. Airborne transmission through the aerosols produced by pigs coughing or sneezing are also an important means of infection.[12] The virus usually spreads quickly through a herd, infecting all the pigs within just a few days.[2] Transmission may also occur through wild animals, such aswild boar, which can spread the disease between farms.[57]

[edit]Transmission to humans

People who work with poultry and swine, especially people with intense exposures, are at increased risk of zoonotic infection with influenza virus endemic in these animals, and constitute a population of human hosts in which zoonosis and reassortment can co-occur.[58]Vaccination of these workers against influenza and surveillance for new influenza strains among this population may therefore be an important public health measure.[59] Transmission of influenza from swine to humans who work with swine was documented in a small surveillance study performed in 2004 at the University of Iowa.[60] This study among others forms the basis of a recommendation that people whose jobs involve handling poultry and swine be the focus of increased public health surveillance.[58] Other professions at particular risk of infection are veterinarians and meat processing workers, although the risk of infection for both of these groups is lower than that of farm workers.[61]

[edit]Interaction with avian H5N1 in pigs

Pigs are unusual as they can be infected with influenza strains that usually infect three different species: pigs, birds and humans.[62] This makes pigs a host where influenza viruses might exchange genes, producing new and dangerous strains.[62] Avian influenza virus H3N2 isendemic in pigs in China and has been detected in pigs in Vietnam, increasing fears of the emergence of new variant strains.[63] H3N2evolved from H2N2 by antigenic shift.[64] In August 2004, researchers in China found H5N1 in pigs.[65]
Main symptoms of swine flu in swine.[2]
These H5N1 infections may be quite common: in a survey of 10 apparently healthy pigs housed near poultry farms in West Java, where avian flu had broken out, five of the pig samples contained the H5N1 virus. The Indonesian government has since found similar results in the same region. Additional tests of 150 pigs outside the area were negative.[66][67]

[edit]Signs and symptoms

[edit]In swine

In pigs influenza infection produces feverlethargysneezingcoughingdifficulty breathing and decreased appetite.[12] In some cases the infection can cause abortion. Although mortality is usually low (around 1–4%),[2] the virus can produce weight loss and poor growth, causing economic loss to farmers.[12] Infected pigs can lose up to 12 pounds of body weight over a 3 to 4 week period.[12]

[edit]In humans

Main symptoms of swine flu in humans[68]
Direct transmission of a swine flu virus from pigs to humans is occasionally possible (calledzoonotic swine flu). In all, 50 cases are known to have occurred since the first report in medical literature in 1958, which have resulted in a total of six deaths.[69] Of these six people, one was pregnant, one had leukemia, one had Hodgkin's lymphoma and two were known to be previously healthy.[69] Despite these apparently low numbers of infections, the true rate of infection may be higher, since most cases only cause a very mild disease, and will probably never be reported or diagnosed.[69]
Video xo.ogv
In this video, Dr. Joe Bresee, with CDC's Influenza Division, describes the symptoms of swine flu and warning signs to look for that indicate the need for urgent medical attention.
See also: See this video with subtitles on YouTube [70]
According to the Centers for Disease Control and Prevention (CDC), in humans the symptoms of the 2009 "swine flu" H1N1 virus are similar to those of influenza and of influenza-like illness in general. Symptoms include fevercoughsore throat, body aches, headachechills and fatigue. The 2009 outbreak has shown an increased percentage of patients reporting diarrhea andvomiting.[71] The 2009 H1N1 virus is not zoonotic swine flu, as it is not transmitted from pigs to humans, but from person to person.
Because these symptoms are not specific to swine flu, a differential diagnosis of probable swine flu requires not only symptoms but also a high likelihood of swine flu due to the person's recent history. For example, during the 2009 swine flu outbreak in the United States, CDC advised physicians to "consider swine influenza infection in the differential diagnosis of patients with acute febrile respiratory illness who have either been in contact with persons with confirmed swine flu, or who were in one of the five U.S. states that have reported swine flu cases or in Mexico during the 7 days preceding their illness onset."[72] A diagnosis of confirmed swine flu requires laboratory testing of a respiratory sample (a simple nose and throat swab).[72]
The most common cause of death is respiratory failure. Other causes of death are pneumonia(leading to sepsis),[73] high fever (leading to neurological problems), dehydration (from excessive vomiting and diarrhea), electrolyte imbalance and kidney failure.[74] Fatalities are more likely in young children and the elderly.

[edit]Diagnosis

Thermal scanning of passengers arriving at Singapore Changi airport.
The CDC recommends real time RT-PCR as the method of choice for diagnosing H1N1.[75] This method allows a specific diagnosis of novel influenza (H1N1) as opposed to seasonal influenza. Near-patient point of care tests are in development.[76]

[edit]Prevention

Prevention of swine influenza has three components: prevention in swine, prevention of transmission to humans, and prevention of its spread among humans.

[edit]In swine

Methods of preventing the spread of influenza among swine include facility management, herd management, and vaccination (ATCvet code: QI09AA03). Because much of the illness and death associated with swine flu involves secondary infection by other pathogens, control strategies that rely on vaccination may be insufficient.
Control of swine influenza by vaccination has become more difficult in recent decades, as theevolution of the virus has resulted in inconsistent responses to traditional vaccines. Standard commercial swine flu vaccines are effective in controlling the infection when the virus strains match enough to have significant cross-protection, and custom (autogenous) vaccines made from the specific viruses isolated are created and used in the more difficult cases.[77][78] Presentvaccination strategies for SIV control and prevention in swine farms typically include the use of one of several bivalent SIV vaccines commercially available in the United States. Of the 97 recent H3N2 isolates examined, only 41 isolates had strong serologic cross-reactions with antiserum to three commercial SIV vaccines. Since the protective ability of influenza vaccines depends primarily on the closeness of the match between the vaccine virus and the epidemic virus, the presence of nonreactive H3N2 SIV variants suggests that current commercial vaccines might not effectively protect pigs from infection with a majority of H3N2 viruses.[69][79] The United States Department of Agriculture researchers say that while pig vaccination keeps pigs from getting sick, it does not block infection or shedding of the virus.[80]
Facility management includes using disinfectants and ambient temperature to control virus in the environment. The virus is unlikely to survive outside living cells for more than two weeks, except in cold (but above freezing) conditions, and it is readily inactivated by disinfectants.[2]Herd management includes not adding pigs carrying influenza to herds that have not been exposed to the virus. The virus survives in healthy carrier pigs for up to 3 months and can be recovered from them between outbreaks. Carrier pigs are usually responsible for the introduction of SIV into previously uninfected herds and countries, so new animals should be quarantined.[54] After an outbreak, as immunity in exposed pigs wanes, new outbreaks of the same strain can occur.[2]

[edit]In humans

Prevention of pig to human transmission
AntigenicShift HiRes vector.svg
Swine can be infected by both avian and human flu strains of influenza, and therefore are hosts where the antigenic shifts can occur that create new influenza strains.
The transmission from swine to human is believed to occur mainly in swine farms where farmers are in close contact with live pigs. Although strains of swine influenza are usually not able to infect humans this may occasionally happen, so farmers and veterinarians are encouraged to use a facemask when dealing with infected animals. The use of vaccines on swine to prevent their infection is a major method of limiting swine to human transmission. Risk factors that may contribute to swine-to-human transmission include smoking and, especially, not wearing gloves when working with sick animals—thereby increasing the likelihood of subsequent hand-to-eye, hand-to-nose or hand-to-mouth transmission.[81]
Prevention of human to human transmission
Influenza spreads between humans when infected people cough or sneeze, then other people breathe in the virus or touch something with the virus on it and then touch their own face.[82] "Avoid touching your eyes, nose or mouth. Germs spread this way."[83] Swine flu cannot be spread by pork products, since the virus is not transmitted through food.[82] The swine flu in humans is most contagious during the first five days of the illness although some people, most commonly children, can remain contagious for up to ten days. Diagnosis can be made by sending a specimen, collected during the first five days for analysis.[84]
Thermal imaging camera & screen, photographed in an airport terminal in Greece. Thermal imaging can detect elevated body temperature, one of the signs of the virus H1N1 (Swine influenza).
Recommendations to prevent spread of the virus among humans include using standard infection control against influenza. This includes frequent washing of hands with soap and water or withalcohol-based hand sanitizers, especially after being out in public.[85] Chance of transmission is also reduced by disinfecting household surfaces, which can be done effectively with a diluted chlorine bleach solution.[86]
Experts agree that hand-washing can help prevent viral infections, including ordinary influenza and the swine flu virus. Also not touching your eyes, nose or mouth with your hands helps to prevent the flu.[83] Influenza can spread in coughs or sneezes, but an increasing body of evidence shows small droplets containing the virus can linger on tabletops, telephones and other surfaces and be transferred via the fingers to the eyes, nose or mouth. Alcohol-based gel or foam hand sanitizerswork well to destroy viruses and bacteria. Anyone with flu-like symptoms such as a sudden fever, cough or muscle aches should stay away from work or public transportation and should contact a doctor for advice.[87]
Social distancing is another tactic. It means staying away from other people who might be infected and can include avoiding large gatherings, spreading out a little at work, or perhaps staying home and lying low if an infection is spreading in a community. Public health and other responsible authorities have action plans which may request or require social distancing actions depending on the severity of the outbreak.

[edit]Vaccination

Vaccines are available for different kinds of swine flu. The U.S. Food and Drug Administration (FDA) approved the new swine flu vaccine for use in the United States on September 15, 2009.[88] Studies by the National Institutes of Health (NIH), show that a single dose creates enough antibodies to protect against the virus within about 10 days.[89]

[edit]Treatment

[edit]In swine

As swine influenza is rarely fatal to pigs, little treatment beyond rest and supportive care is required.[54] Instead veterinary efforts are focused on preventing the spread of the virus throughout the farm, or to other farms.[12] Vaccination and animal management techniques are most important in these efforts. Antibiotics are also used to treat this disease, which although they have no effect against the influenza virus, do help prevent bacterial pneumonia and other secondary infections in influenza-weakened herds.[54]

[edit]In humans

If a person becomes sick with swine flu, antiviral drugs can make the illness milder and make the patient feel better faster. They may also prevent serious flu complications. For treatment, antiviral drugs work best if started soon after getting sick (within 2 days of symptoms). Beside antivirals, supportive care at home or in hospital, focuses on controlling fevers, relieving pain and maintaining fluid balance, as well as identifying and treating any secondary infections or other medical problems. The U.S. Centers for Disease Control and Preventionrecommends the use of Tamiflu (oseltamivir) or Relenza (zanamivir) for the treatment and/or prevention of infection with swine influenza viruses; however, the majority of people infected with the virus make a full recovery without requiring medical attention or antiviral drugs.[90]The virus isolates in the 2009 outbreak have been found resistant to amantadine and rimantadine.[91]
In the U.S., on April 27, 2009, the FDA issued Emergency Use Authorizations to make available Relenza and Tamiflu antiviral drugs to treat the swine influenza virus in cases for which they are currently unapproved. The agency issued these EUAs to allow treatment of patients younger than the current approval allows and to allow the widespread distribution of the drugs, including by non-licensed volunteers.[92]

[edit]See also

[edit]Notes

  1. ^ International Committee on Taxonomy of Viruses. "The Universal Virus Database, version 4: Influenza A".[dead link]
  2. a b c d e f "Swine influenza"The Merck Veterinary Manual. 2008. ISBN 1442167424. Retrieved April 30, 2009.
  3. ^ [1][dead link]
  4. ^ Heinen PP (15 September 2003). "Swine influenza: a zoonosis"Veterinary Sciences TomorrowISSN 1569-0830. "Influenza B and C viruses are almost exclusively isolated from man, although influenza C virus has also been isolated from pigs and influenza B has recently been isolated from seals.".
  5. ^ Bouvier NM, Palese P (September 2008). "The biology of influenza viruses". Vaccine 26 Suppl 4: D49–53.doi:10.1016/j.vaccine.2008.07.039PMID 19230160.
  6. ^ Kimura H, Abiko C, Peng G, et al. (April 1997). "Interspecies transmission of influenza C virus between humans and pigs".Virus Research 48 (1): 71–9. doi:10.1016/S0168-1702(96)01427-XPMID 9140195.
  7. a b Matsuzaki Y, Sugawara K, Mizuta K, et al. (February 2002). "Antigenic and genetic characterization of influenza C viruses which caused two outbreaks in Yamagata City, Japan, in 1996 and 1998".Journal of Clinical Microbiology 40 (2): 422–9.doi:10.1128/JCM.40.2.422-429.2002PMC 153379.PMID 11825952.
  8. ^ Lynch JP, Walsh EE (April 2007). "Influenza: evolving strategies in treatment and prevention". Semin Respir Crit Care Med 28 (2): 144–58. doi:10.1055/s-2007-976487PMID 17458769.
  9. a b c "Swine Influenza"Swine Diseases (Chest)Iowa State University College of Veterinary Medicine.
  10. ^ Ma W, Vincent AL, Gramer MR, et al. (December 2007). "Identification of H2N3 influenza A viruses from swine in the United States". Proceedings of the National Academy of Sciences of the United States of America 104 (52): 20949–54.doi:10.1073/pnas.0710286104PMC 2409247.PMID 18093945.
  11. ^ Shin JY, Song MS, Lee EH, et al. (November 2006). "Isolation and characterization of novel H3N1 swine influenza viruses from pigs with respiratory diseases in Korea". Journal of Clinical Microbiology 44 (11): 3923–7. doi:10.1128/JCM.00904-06.PMC 1698339PMID 16928961.
  12. a b c d e f g Kothalawala H, Toussaint MJ, Gruys E (June 2006). "An overview of swine influenza". Vet Q 28 (2): 46–53.PMID 16841566.
  13. ^ Yassine HM, Al-Natour MQ, Lee CW, Saif YM (2007). "Interspecies and intraspecies transmission of triple reassortant H3N2 influenza A viruses". Virology Journal 4: 129.doi:10.1186/1743-422X-4-129PMC 2228287.PMID 18045494.
  14. ^ "Swine influenza A (H1N1) infection in two children --- Southern California, March--April 2009"Morbidity and Mortality Weekly Report (Centers for Disease Control58 (Dispatch) (1–3). 22 April 2009.
  15. ^ "Interview With Tracey McNamara". Journal of Homeland Security, August 2002. Retrieved 2009-05-26.
  16. ^ Laura H. Kahn (2007-03-13). "Animals: The world's best (and cheapest) biosensors". Retrieved 2005-05-26.
  17. a b c Knobler S, Mack A, Mahmoud A, Lemon S, ed. "1: The Story of Influenza"The Threat of Pandemic Influenza: Are We Ready? Workshop Summary (2005). Washington, D.C.: The National Academies Press. p. 75.
  18. a b Olsen CW (May 2002). "The emergence of novel swine influenza viruses in North America"Virus Research 85 (2): 199–210. doi:10.1016/S0168-1702(02)00027-8PMID 12034486.
  19. ^ Boffey, Philip M. (5 September 1976). "Soft evidence and hard sell". New York Times.
  20. a b c d Taubenberger JK, Morens DM (2006). "1918 Influenza: the mother of all pandemics"Emerg Infect Dis 12 (1): 15–22.PMID 16494711.
  21. ^ "U.S. pork groups urge hog farmers to reduce flu risk". Reuters. 26 April 2009.
  22. ^ Heinen, P. (2003). "Swine influenza: a zoonosis"Veterinary Sciences Tomorrow: 1–11. Retrieved 2009-05-04.
  23. ^ Kay RM, Done SH, Paton DJ (August 1994). "Effect of sequential porcine reproductive and respiratory syndrome and swine influenza on the growth and performance of finishing pigs". Vet. Rec. 135 (9): 199–204. doi:10.1136/vr.135.9.199.PMID 7998380.
  24. ^ Vana G, Westover KM (June 2008). "Origin of the 1918 Spanish influenza virus: a comparative genomic analysis". Molecular Phylogenetics and Evolution 47 (3): 1100–10.doi:10.1016/j.ympev.2008.02.003PMID 18353690.
  25. ^ Antonovics J, Hood ME, Baker CH (April 2006). "Molecular virology: was the 1918 flu avian in origin?". Nature 440 (7088): E9; discussion E9–10. doi:10.1038/nature04824.PMID 16641950.
  26. ^ Patterson KD, Pyle GF (1991). "The geography and mortality of the 1918 influenza pandemic". Bulletin of the History of Medicine 65(1): 4–21. PMID 2021692.
  27. a b Gaydos JC, Top FH, Hodder RA, Russell PK (January 2006)."Swine influenza a outbreak, Fort Dix, New Jersey, 1976".Emerging Infectious Diseases 12 (1): 23–8. PMID 16494712.
  28. ^ Schmeck, Harold M. (March 25, 1976). "Ford Urges Flu Campaign To Inoculate Entire U.S."The New York Times.
  29. ^ Richard E. Neustadt and Harvey V. Fineberg. (1978). The Swine Flu Affair: Decision-Making on a Slippery DiseaseNational Academies Press.
  30. ^ "The Last Great Swine Flu Epidemic"Salon.com, April 28, 2009.
  31. ^ Retailliau HF, Curtis AC, Storr G, Caesar G, Eddins DL, Hattwick MA (March 1980). "Illness after influenza vaccination reported through a nationwide surveillance system, 1976-1977".American Journal of Epidemiology 111 (3): 270–8.PMID 7361749.
  32. ^ "Historical National Population Estimates: July 1, 1900 to July 1, 1999"Washington D.C.: Population Division, U.S. Bureau of the Census. 2000-06-28. Retrieved 2009-08-21.
  33. ^ Schonberger LB, Bregman DJ, Sullivan-Bolyai JZ, et al. (August 1979). "Guillain-Barre syndrome following vaccination in the National Influenza Immunization Program, United States, 1976--1977"American Journal of Epidemiology 110 (2): 105–23.PMID 463869.
  34. a b c "General Questions and Answers on Guillain-Barr syndrome". Centers for Disease Control and Prevention. September 14, 2009.
  35. ^ Haber P, Sejvar J, Mikaeloff Y, DeStefano F (2009). "Vaccines and Guillain-Barré syndrome". Drug Safety 32 (4): 309–23.doi:10.2165/00002018-200932040-00005PMID 19388722.
  36. ^ Kaplan JE, Katona P, Hurwitz ES, Schonberger LB (August 1982). "Guillain-Barré syndrome in the United States, 1979-1980 and 1980-1981. Lack of an association with influenza vaccination".JAMA 248 (6): 698–700. doi:10.1001/jama.248.6.698.PMID 7097920.
  37. ^ Vellozzi C, Burwen DR, Dobardzic A, Ball R, Walton K, Haber P (March 2009). "Safety of trivalent inactivated influenza vaccines in adults: Background for pandemic influenza vaccine safety monitoring". Vaccine 27 (15): 2114–2120.doi:10.1016/j.vaccine.2009.01.125PMID 19356614.
  38. ^ "Last Year's (2009) H1N1 Flu Vaccine Was Safe, Study Finds". Wunderground.com. 2011-02-02. Retrieved 2011-05-22.
  39. ^ McKinney WP, Volkert P, Kaufman J (January 1990). "Fatal swine influenza pneumonia during late pregnancy". Archives of Internal Medicine 150 (1): 213–5. doi:10.1001/archinte.150.1.213.PMID 2153372.
  40. ^ Kimura K, Adlakha A, Simon PM (March 1998). "Fatal case of swine influenza virus in an immunocompetent host". Mayo Clinic Proceedings. Mayo Clinic 73 (3): 243–5. doi:10.4065/73.3.243.PMID 9511782.
  41. ^ "Key Facts About Swine Flu (CDC)". Cdc.gov. Retrieved 2009-05-07.
  42. ^ Wells DL, Hopfensperger DJ, Arden NH, et al. (1991). "Swine influenza virus infections. Transmission from ill pigs to humans at a Wisconsin agricultural fair and subsequent probable person-to-person transmission". JAMA 265 (4): 478–81.doi:10.1001/jama.265.4.478PMID 1845913.
  43. ^ Stephanie Desmon (April 28, 2009). "Expert: Swine flu virus more complex than typically seen"Baltimore Sun.[dead link]
  44. ^ "Pork industry is blurring the science of swine flu - Short Sharp Science". New Scientist. Retrieved 2009-05-07.
  45. ^ "Swine flu: The predictable pandemic? - 29 April 2009". New Scientist. Retrieved 2009-05-07.
  46. ^ CDC Confirms Ties to Virus First Discovered in U.S. Pig Factories[dead link]
  47. ^ Video Segments 3,4,5 in Flu Factories: Tracing the Origins of the Swine Flu Pandemic[dead link]
  48. ^ Swine Flu Kept Stable Humans Untouched For 80 Years[dead link]
  49. ^ Triple Hybrid Mutant Pig-Bird-Human Crossbreed Virus[dead link]
  50. ^ North Carolina, 1998 Ground Zero[dead link]
  51. ^ "DA probes reported swine flu 'outbreak' in N. Ecija". Gmanews.tv. Retrieved 2009-04-25.
  52. ^ "Gov't declares hog cholera alert in Luzon". Gmanews.tv. Retrieved 2009-04-25.
  53. ^ "New mothers urged to get swine flu vaccine". BBC News. 2011-01-10. Retrieved 2011-01-20.
  54. a b c d e "Influenza Factsheet". Center for Food Security and Public Health, Iowa State University.
  55. ^ Gilchrist MJ, Greko C, Wallinga DB, Beran GW, Riley DG, Thorne PS (February 2007). "The potential role of concentrated animal feeding operations in infectious disease epidemics and antibiotic resistance". Environmental Health Perspectives 115 (2): 313–6.doi:10.1289/ehp.8837PMC 1817683PMID 17384785.
  56. ^ Saenz RA, Hethcote HW, Gray GC (2006). "Confined animal feeding operations as amplifiers of influenza". Vector Borne and Zoonotic Diseases 6 (4): 338–46. doi:10.1089/vbz.2006.6.338.PMC 2042988PMID 17187567.
  57. ^ Vicente J, León-Vizcaíno L, Gortázar C, José Cubero M, González M, Martín-Atance P (July 2002). "Antibodies to selected viral and bacterial pathogens in European wild boars from southcentral Spain"Journal of Wildlife Diseases 38 (3): 649–52.PMID 12238391.
  58. a b Gray GC, Kayali G (April 2009). "Facing pandemic influenza threats: the importance of including poultry and swine workers in preparedness plans". Poultry Science 88 (4): 880–4.doi:10.3382/ps.2008-00335PMID 19276439.
  59. ^ Gray GC, Trampel DW, Roth JA (May 2007). "Pandemic influenza planning: shouldn't swine and poultry workers be included?".Vaccine 25 (22): 4376–81. doi:10.1016/j.vaccine.2007.03.036.PMC 1939697PMID 17459539.
  60. ^ Gray GC, McCarthy T, Capuano AW, Setterquist SF, Olsen CW, Alavanja MC (December 2007). "Swine workers and swine influenza virus infections"Emerging Infectious Diseases 13(12): 1871–8. PMC 2876739PMID 18258038.
  61. ^ Myers KP, Olsen CW, Setterquist SF, et al. (January 2006). "Are swine workers in the United States at increased risk of infection with zoonotic influenza virus?". Clinical Infectious Diseases 42 (1): 14–20. doi:10.1086/498977PMC 1673212.PMID 16323086.
  62. a b Thacker E, Janke B (February 2008). "Swine influenza virus: zoonotic potential and vaccination strategies for the control of avian and swine influenzas". J. Infect. Dis. 197 Suppl 1: S19–24.doi:10.1086/524988PMID 18269323.
  63. ^ Yu H, Hua RH, Zhang Q, et al. (March 2008). "Genetic evolution of swine influenza A (H3N2) viruses in China from 1970 to 2006".Journal of Clinical Microbiology 46 (3): 1067–75.doi:10.1128/JCM.01257-07PMC 2268354.PMID 18199784.
  64. ^ Lindstrom SE, Cox NJ, Klimov A (October 2004). "Genetic analysis of human H2N2 and early H3N2 influenza viruses, 1957-1972: evidence for genetic divergence and multiple reassortment events". Virology 328 (1): 101–19.doi:10.1016/j.virol.2004.06.009PMID 15380362.
  65. ^ World Health Organization (28 October 2005). "H5N1 avian influenza: timeline" (PDF).
  66. ^ "Indonesian pigs have avian flu virus; bird cases double in China". University of Minnesota: Center for Infectious Disease Research & Policy. 27 May 2005. Retrieved 2009-04-26.
  67. ^ "H5N1 virus may be adapting to pigs in Indonesia". University of Minnesota: Center for Infectious Disease Research & Policy. 31 March 2009. Retrieved 2009-04-26. report on pigs as carriers.
  68. ^ "Centers for Disease Control and Prevention > Key Facts about Swine Influenza (Swine Flu)". Retrieved April 27, 2009.
  69. a b c d Myers KP, Olsen CW, Gray GC (April 2007). "Cases of swine influenza in humans: a review of the literature". Clinical Infectious Diseases 44 (8): 1084–8. doi:10.1086/512813.PMC 1973337PMID 17366454.
  70. ^ " Symptoms of H1N1 (Swine Flu) ‏". YouTube. 2009-04-28. Retrieved 2011-05-22.
  71. ^ "Swine Flu and You"CDC. 2009-04-26. Retrieved 2009-04-26.
  72. a b Centers for Disease Control and Prevention (April 27, 2009)."CDC Health Update: Swine Influenza A (H1N1) Update: New Interim Recommendations and Guidance for Health Directors about Strategic National Stockpile Materiel". Health Alert Network. Retrieved April 27, 2009.
  73. ^ "Study: Swine flu resembles feared 1918 flu". MSNBC. 2009-07-13. Retrieved 2011-05-22.
  74. ^ "Swine flu can damage kidneys, doctors find". Reuters. April 14, 2010. Retrieved April 17, 2010.
  75. ^ "CDC H1N1 Flu | Interim Guidance on Specimen Collection, Processing, and Testing for Patients with Suspected Novel Influenza A (H1N1) (Swine Flu) Virus Infection". Cdc.gov. 2009-05-13. Retrieved 2011-05-22.
  76. ^ "Micronics Acquires License to Biosearch Technologies’ Nucleic Acid Assay Chemistries". Biosearchtech.com. 2009-10-28. Retrieved 2011-05-22.
  77. ^ "Swine flu virus turns endemic". National Hog Farmer. 15 September 2007.
  78. ^ "Swine"Custom Vaccines. Novartis.[dead link]
  79. ^ Gramer MR, Lee JH, Choi YK, Goyal SM, Joo HS (July 2007). "Serologic and genetic characterization of North American H3N2 swine influenza A viruses". Canadian Journal of Veterinary Research = Revue Canadienne De Recherche Vétérinaire 71 (3): 201–6. PMC 1899866PMID 17695595.
  80. ^ "Swine flu: The predictable pandemic?". 2009-04-29.
  81. ^ Ramirez A, Capuano AW, Wellman DA, Lesher KA, Setterquist SF, Gray GC (June 2006). "Preventing zoonotic influenza virus infection"Emerging Infect. Dis. 12 (6): 996–1000.PMC 1673213PMID 16707061.
  82. a b "Q & A: Key facts about swine influenza (swine flu) – Spread of Swine Flu". Centers for Disease Control and Prevention. 24 April 2009. Retrieved 2009-04-26.
  83. a b "CDC H1N1 Flu | H1N1 Flu and You". Cdc.gov. Retrieved 2011-05-22.
  84. ^ "Q & A: Key facts about swine influenza (swine flu) – Diagnosis". Centers for Disease Control and Prevention. 24 April 2009. Retrieved 2009-04-26.
  85. ^ "CDC - Influenza (Flu) | Swine Influenza (Flu) Investigation". Cdc.gov. Retrieved 2009-04-27.
  86. ^ "Chlorine Bleach: Helping to Manage the Flu Risk". Water Quality & Health Council. April 2009. Retrieved 2009-05-12.
  87. ^ "Self protection measures". LHC. Retrieved 2009-10-15.
  88. ^ "FDA Approves Vaccines for 2009 H1N1 Influenza Virus". FDA. Retrieved 2009-10-15.
  89. ^ "NIH studies on Swine flu vaccine". NIH. Retrieved 2009-10-15.[dead link][dead link]
  90. ^ http://www.who.int/csr/disease/swineflu/faq/en/index.html
  91. ^ "Antiviral Drugs and Swine Influenza". Centers for Disease Control. Retrieved 2009-04-27.
  92. ^ "FDA Authorizes Emergency Use of Influenza Medicines, Diagnostic Test in Response to Swine Flu Outbreak in Humans.FDA News, April 27, 2009". Fda.gov. 2009-04-27. Retrieved 2009-05-07.

[edit]Further reading

[edit]External links

Comments

  1. Dr. Imoloa has really made me so much believe in him by getting me cured with his herbal treatment. i really appreciate you Dr.imoloa for bringing back happiness to my life again. thank you so much,friends join me to thank him for what he has actually done for me i pray to you all for a good life and good health, and most especially to you Dr. imoloa Thanks

    I have been suffering from (HERPES SIMPLEX VIRUS) disease for the past four years and had constant pain, especially in my knees. During the first year,I had faith in God that i would be healed someday.This disease started circulating all over my body and i have been taking treatment from my doctors, few months ago i came on search on the internet if i could get any information concerning the cure of this disease, on my search i saw a testimony of someone who has been healed from (HERPES SIMPLEX VIRUS) by this Man Dr imoloa and she drop the email address of this man and advise we should contact him for any sickness that he would be of help, so i wrote to Dr. imoloa telling him about my (HERPES Virus) well after all the procedures and remedy given to me by this man few weeks later i started experiencing changes all over me. I am now here to testify that i am no longer a herpes patient, I have experience a total transformation in my life,for all herpes patients get your herbal medicine to cure your sickness. And there has being rapid improvement in my health, I no longer feel pains and I wake up each morning feeling revived. So friends my advise is if you have such sickness or any other at all,you can contact him on drimolaherbalmademedicine@gmail.com, you can still reach him on whatssap- +2347081986098
    CANCER
    EPILEPSY.
    GENPILENCIN.
    HIV AIDS.
    DIABETICS
    STROKE.
    BREAST ENLARGEMENT...PENIS ENLARGEMENT, LUPUS DISEASE, BREAST CANCER, BONE CANCER, FEVER, DIARRHOEA, ARTHRITIS, DRY COUGH, MUSCLE ACHES, FATIGUE, H.P.V TYPE 1 TYPE 2 TYPE 3 AND TYPE 4. TYPE HUMAN PAPAILOMA VIRUS HERPES. SYPHILIS. HEPATITIS A B and C.

    ReplyDelete

Post a Comment

Popular Posts

From Wikipedia, the free encyclopedia Jump to: navigation, search For other uses, see Dengue fever (disambiguation). Dengue fever Classification and external resources The typical rash seen in dengue fever ICD-10 A90. ICD-9 061 DiseasesDB 3564 MedlinePlus 001374 eMedicine med/528 MeSH C02.782.417.214 Dengue fever (UK: /ˈdɛŋɡeɪ/, US: /ˈdɛŋɡiː/), also known as breakbone fever, is an infectious tropical disease caused by the dengue virus. Symptoms include fever, headache, muscle and joint pains, and a characteristic morbilliform skin rash. In a small proportion of cases the disease develops to the life-threatening dengue hemorrhagic fever (bleeding, low levels of blood platelets and blood plasma leakage) and dengue shock syndrome (circulatory failure). Dengue is transmitted by several species of mosquito within the Aedes genus, principally A. aegypti. The virus has four different types; infection with one type usually gives lifelong immunity to that type, but only short-term immunity to the others. Subsequent infection with a different type is believed to increase the risk of severe complications. As there is no vaccine, prevention is sought by reducing the habitat and the number of mosquitoes and limiting exposure to bites. Treatment of acute dengue is supportive, using either oral or intravenous rehydration for mild or moderate disease, and intravenous fluids and blood transfusion for more severe cases. The incidence of dengue fever has increased dramatically over the last 50 years, with around 50–100 million people infected yearly. Dengue is currently endemic in more than 110 countries. Early descriptions of the condition date from 1779, and its viral cause and the transmission were elucidated in the early 20th century. Dengue has become a worldwide problem since the Second World War. Contents [hide] 1 Signs and symptoms 1.1 Clinical course 1.2 Associated problems 2 Cause 2.1 Virology 2.2 Transmission 2.3 Predisposition 3 Mechanism 3.1 Viral reproduction 3.2 Severe disease 4 Diagnosis 4.1 General 4.2 Classification 4.3 Virology and serology 5 Prevention 6 Management 7 Epidemiology 8 History 8.1 Etymology 8.2 Discovery 9 Research 10 Notes 11 References 12 External links Signs and symptoms Schematic depiction of the symptoms of dengue fever People infected with dengue virus are commonly asymptomatic or only have mild symptoms such as an uncomplicated fever.[1][2] Others have more severe illness, and in a small proportion it is life-threatening.[1] The incubation period (time between exposure and onset of symptoms) ranges from 3–14 days, but most often it is 4–7 days.[3] This means that travellers returning from endemic areas are unlikely to have dengue if fever or other symptoms start more than 14 days after arriving home.[4] Children often experience symptoms similar to those of the common cold and gastroenteritis (vomiting and diarrhea),[5] but are more susceptible to the severe complications.[4] Clinical course The characteristic symptoms of dengue are: a sudden-onset fever, headache (typically behind the eyes), muscle and joint pains, and a rash. The alternative name for dengue, "break-bone fever", comes from the associated muscle and joints pains.[1][6] The course of infection is divided into three phases: febrile, critical, and recovery.[7] The febrile phase involves high fevers, frequently over 40 °C (104 °F) and is associated with generalized pain and a headache; this usually lasts two to seven days.[6][7] Flushed skin and some small red spots called petechiae, which are caused by broken capillaries, may occur at this point,[7] as may some mild bleeding from mucous membranes of the mouth and nose.[4][6] The critical phase, if it occurs, follows the resolution of the high fever and typically lasts one to two days.[7] During this phase there may be significant fluid accumulation in the chest and abdominal cavity due to increased capillary permeability and leakage. This leads to depletion of fluid from the circulation and decreased blood supply to vital organs.[7] During this phase, organ dysfunction and severe bleeding (typically from the gastrointestinal tract) may occur.[4][7] Shock and hemorrhage occur in less than 5% of all cases of dengue,[4] however those who have previously been infected with other serotypes of dengue virus ("secondary infection") have an increased risk.[4][8] The recovery phase occurs next, with resorption of the leaked fluid into the bloodstream.[7] This usually lasts two to three days.[4] The improvement is often striking, but there may be severe itching and a slow heart rate.[4][7] It is during this stage that a fluid overload state may occur, which if it affects the brain may reduce the level of consciousness or cause seizures.[4] Associated problems Dengue may occasionally affect several other body systems.[7] This may be either in isolation or along with the classic dengue symptoms.[5] A decreased level of consciousness occurs in 0.5–6% of severe cases. This may be caused by infection of the brain by the virus or indirectly due to impairment of vital organs, for example, the liver.[5][9] Other neurological disorders have been reported in the context of dengue, such as transverse myelitis and Guillain-Barré syndrome.[5] Infection of the heart and acute liver failure are among the rarer complications of dengue.[4][7] Cause Virology Main article: Dengue virus A TEM micrograph showing dengue virus virions (the cluster of dark dots near the center) Dengue fever virus (DENV) is an RNA virus of the family Flaviviridae; genus Flavivirus. Other members of the same family include yellow fever virus, West Nile virus, St. Louis encephalitis virus, Japanese encephalitis virus, tick-borne encephalitis virus, Kyasanur forest disease virus, and Omsk hemorrhagic fever virus.[9] Most are transmitted by arthropods (mosquitoes or ticks), and are therefore also referred to as arboviruses (arthropod-borne viruses).[9] The dengue virus genome (genetic material) contains about 11,000 nucleotide bases, which code for the three different types of protein molecules that form the virus particle (C, prM and E) and seven other types of protein molecules (NS1, NS2a, NS2b, NS3, NS4a, NS4b, NS5) that are only found in infected host cells and are required for replication of the virus.[8][10] There are four strains of the virus, which are called serotypes, and these are referred to as DENV-1, DENV-2, DENV-3 and DENV-4.[2] All four serotypes can cause the full spectrum of disease.[8] Infection with one serotype is believed to produce lifelong immunity to that serotype but only short term protection against the others.[2][6] The severe complications on secondary infection seem to occur particularly if someone previously exposed to serotype DENV-1 then contracts serotype DENV-2 or serotype DENV-3, or if someone previously exposed to type DENV-3 then acquires DENV-2.[10] Transmission The mosquito Aedes aegypti feeding off a human host Dengue virus is primarily transmitted by Aedes mosquitoes, particularly A. aegypti.[2] These mosquitoes usually live between the latitudes of 35° North and 35° South below an elevation of 1,000 metres (3,300 ft).[2] They bite primarily during the day.[11] Other mosquito species—Aedes albopictus, A. polynesiensis and several A. scutellaris—may also transmit the disease.[2] Humans are the primary host of the virus,[2][9] but it may also circulate in nonhuman primates.[12] An infection may be acquired via a single bite.[13] A mosquito that takes a blood meal from a person infected with dengue fever becomes itself infected with the virus in the cells lining its gut. About 8–10 days later, the virus spreads to other tissues including the mosquito's salivary glands and is subsequently released into its saliva. The virus seems to have no detrimental effect on the mosquito, which remains infected for life. Aedes aegypti prefers to lay its eggs in artificial water containers and tends to live in close proximity to humans, and prefers to feed off people rather than other vertebrates.[14] Dengue may also be transmitted via infected blood products and through organ donation.[15][16] In countries such as Singapore, where dengue is endemic, the risk is estimated to be between 1.6 and 6 per 10,000 transfusions.[17] Vertical transmission (from mother to child) during pregnancy or at birth has been observed.[13] Other person-to-person modes of transmission have been reported, but are very unusual.[6] Predisposition Severe disease is more common in babies and young children, and in contrast to many other infections it is more common in children that are relatively well nourished.[4] Women are more at risk than men.[10] Dengue may be life-threatening in people with chronic diseases such as diabetes and asthma.[10] It is thought that polymorphisms (normal variations) in particular genes may increase the risk of severe dengue complications. Examples include the genes coding for the proteins known as TNFα, mannan-binding lectin,[1] CTLA4, TGFβ,[8] DC-SIGN, and particular forms of human leukocyte antigen.[10] A common genetic abnormality in Africans, known as glucose-6-phosphate dehydrogenase deficiency, appears to increase the risk.[18] Polymorphisms in the genes for the vitamin D receptor and FcγR seem to offer protection.[10] Mechanism When a mosquito carrying DENV bites a person, the virus enters the skin together with the mosquito's saliva. It binds to and enters white blood cells, and reproduces inside the cells while they move throughout the body. The white blood cells respond by producing a number of signalling proteins (such as interferon) that are responsible for many of the symptoms, such as the fever, the flu-like symptoms and the severe pains. In severe infection, the virus production inside the body is greatly increased, and many more organs (such as the liver and the bone marrow) can be affected, and fluid from the bloodstream leaks through the wall of small blood vessels into body cavities. As a result, less blood circulates in the blood vessels, and the blood pressure becomes so low that it cannot supply sufficient blood to vital organs. Furthermore, dysfunction of the bone marrow leads to reduced numbers of platelets, which are necessary for effective blood clotting; this increases the risk of bleeding, the other major complication of dengue.[18] Viral reproduction After entering the skin, DENV binds to Langerhans cells (a population of dendritic cells in the skin that identifies pathogens).[18] The virus enters the cells through binding between viral proteins and membrane proteins on the Langerhans cell, specifically the C-type lectins called DC-SIGN, mannose receptor and CLEC5A.[8] DC-SIGN, a non-specific receptor for foreign material on dendritic cells, seems to be the main one.[10] The dendritic cell moves to the nearest lymph node. Meanwhile, the virus genome is replicated in membrane-bound vesicles on the cell's endoplasmic reticulum, where the cell's protein synthesis apparatus produces new viral proteins, and the viral RNA is copied. Immature virus particles are transported to the Golgi apparatus, the part of the cell where the some of the proteins receive necessary sugar chains (glycoproteins). The now mature new viruses bud on the surface of the infected cell and are released by exocytosis. They are then able enter other white blood cells (such as monocytes and macrophages).[8] The initial reaction of infected cells is to produce the interferon, a cytokine that raises a number of defenses against viral infection through the innate immune system by augmenting the production of a large group of proteins (mediated by the JAK-STAT pathway). Some serotypes of DENV appear to have mechanisms to slow down this process. Interferon also activates the adaptive immune system, which leads to the generation of antibodies against the virus as well as T cells that directly attack any cell infected with the virus.[8] Various antibodies are generated; some bind closely to the viral proteins and target them for phagocytosis (ingestion by specialized cells) and destruction, but some bind the virus less well and appear instead to deliver the virus into a part of the phagocytes where it is not destroyed but is able to replicate further.[8] Severe disease Further information: Antibody-dependent enhancement It is not entirely clear why secondary infection with a different strain of DENV places people at risk of dengue hemorrhagic fever and dengue shock syndrome. The most widely accepted hypothesis is that of antibody-dependent enhancement (ADE). The exact mechanism behind ADE is unclear. It may be caused by poor binding of non-neutralizing antibodies and delivery into the wrong compartment of white blood cells that have ingested the virus for destruction.[8][10] There is a suspicion that ADE is not the only mechanism underlying severe dengue-related complications,[1] and various lines of research have implied a role for T cells and soluble factors (such as cytokines and the complement system).[18] Severe disease is marked by two problems: dysfunction of endothelium (the cells that line blood vessels) and disordered blood clotting.[5] Endothelial dysfunction leads to the leakage of fluid from the blood vessels into the chest and abdominal cavities, while coagulation disorder is responsible for the bleeding complications. Higher levels of virus in the blood and involvement of other organs (such as the bone marrow and the liver) are associated with more severe disease. Cells in the affected organs die, leading to the release of cytokines and activation of both coagulation and fibrinolysis (the opposing systems of blood clotting and clot degradation). These alterations together lead to both endothelial dysfunction and coagulation disorder.[18] Diagnosis General Warning signs[19] Abdominal pain Ongoing vomiting Liver enlargement Mucosal bleeding High hematocrit with low platelets Lethargy The diagnosis of dengue is typically made clinically, on the basis of reported symptoms and physical examination; this applies especially in endemic areas.[1] Early disease can however be difficult to differentiate from other viral infections.[4] A probable diagnosis is based on the findings of fever plus two of the following: nausea and vomiting, rash, generalized pains, low white blood cell count, positive tourniquet test, or any warning sign (see table) in someone who lives in an endemic area.[19] Warning signs typically occur before the onset of severe dengue.[7] The tourniquet test, which is particularly useful in settings where no laboratory investigations are readily available, involves the application of a blood pressure cuff for five minutes, followed by the counting of any petechial hemorrhages; a higher number makes a diagnosis of dengue more likely.[7] It may be difficult to distinguish dengue fever and chikungunya, a similar viral infection that shares many symptoms and occurs in similar parts of the world to dengue.[6] Often, investigations are performed to exclude other conditions that cause similar symptoms, such as malaria, leptospirosis, typhoid fever, and meningococcal disease.[4] The earliest change detectable on laboratory investigations is a low white blood cell count, which may then be followed by low platelets and metabolic acidosis.[4] In severe disease, plasma leakage may result in hemoconcentration (as indicated by a rising hematocrit) and hypoalbuminemia.[4] Pleural effusions or ascites may be detected by physical examination when large,[4] but the demonstration of fluid on ultrasound may assist in the early identification of dengue shock syndrome.[1][4] The use of ultrasound is limited by lack of availability in many settings.[1] Classification The World Health Organization's 2009 classification divides dengue fever into two groups: uncomplicated and severe.[1][19] This replaces the 1997 WHO classification, which needed to be simplified as it had been found to be too restrictive, but the older classification is still widely used.[19] The 1997 classification divided dengue into undifferentiated fever, dengue fever, and dengue hemorrhagic fever.[4][20] Dengue hemorrhagic fever was subdivided further into four grades (grade I–IV). Grade I is the presence only of easy bruising or a positive "tourniquet test" (see below) in someone with fever, grade II is the presence of spontaneous bleeding into the skin and elsewhere, grade III is the clinical evidence of shock, and grade IV is shock so severe that blood pressure and pulse cannot be detected.[20] Grades III and IV are referred to as "dengue shock syndrome".[19][20] Virology and serology Dengue fever may also be diagnosed by microbiological laboratory testing.[19] This can be done by virus isolation in cell cultures, nucleic acid detection by PCR, viral antigen detection or specific antibodies (serology).[10][21] Virus isolation and nucleic acid detection are more accurate than antigen detection, but these tests are not widely available due to their greater cost.[21] All tests may be negative in the early stages of the disease.[4][10] Apart from serology, laboratory tests are only of diagnostic value during the acute phase of the illness. Tests for dengue virus-specific antibodies, types IgG and IgM, can be useful in confirming a diagnosis in the later stages of the infection. Both IgG and IgM are produced after 5–7 days. The highest levels (titres) of IgM are detected following a primary infection, but IgM is also produced in secondary and tertiary infections. The IgM becomes undetectable 30–90 days after a primary infection, but earlier following re-infections. IgG, by contrast, remains detectable for over 60 years and, in the absence of symptoms, is a useful indicator of past infection. After a primary infection the IgG reaches peak levels in the blood after 14–21 days. In subsequent re-infections, levels peak earlier and the titres are usually higher. Both IgG and IgM provide protective immunity to the infecting serotype of the virus. In the laboratory test the IgG and the IgM antibodies can cross-react with other flaviviruses, such as yellow fever virus, which can make the interpretation of the serology difficult.[6][10][22] The detection of IgG alone is not considered diagnostic unless blood samples are collected 14 days apart and a greater than fourfold increase in levels of specific IgG is detected. In a person with symptoms, the detection of IgM is considered diagnostic.[22] Prevention A 1920s photograph of efforts to disperse standing water and thus decrease mosquito populations There are currently no approved vaccines for the dengue virus.[1] Prevention thus depends on control of and protection from the bites of the mosquito that transmits it.[11][23] The World Health Organization recommends an Integrated Vector Control program consisting of five elements: (1) Advocacy, social mobilization and legislation to ensure that public health bodies and communities are strengthened, (2) collaboration between the health and other sectors (public and private), (3) an integrated approach to disease control to maximize use of resources, (4) evidence-based decision making to ensure any interventions are targeted appropriately and (5) capacity-building to ensure an adequate response to the local situation.[11] The primary method of controlling A. aegypti is by eliminating its habitats.[11] This may be done by emptying containers of water or by adding insecticides or biological control agents to these areas.[11] Reducing open collections of water through environmental modification is the preferred method of control, given the concerns of negative health effect from insecticides and greater logistical difficulties with control agents.[11] People may prevent mosquito bites by wearing clothing that fully covers the skin and/or the application of insect repellent (DEET being the most effective).[13] Management There are no specific treatments for the dengue fever virus.[1] Treatment depends on the symptoms, varying from oral rehydration therapy at home with close follow-up, to hospital admission with administration of intravenous fluids and/or blood transfusion.[24] A decision for hospital admission is typically based on the presence of the "warning signs" listed in the table above, especially in those with preexisting health conditions.[4] Intravenous hydration is usually only needed for one or two days.[24] The rate of fluid administration is titrated to a urinary output of 0.5–1 mL/kg/hr, stable vital signs and normalization of hematocrit.[4] Invasive medical procedures such as nasogastric intubation, intramuscular injections and arterial punctures are avoided, in view of the bleeding risk.[4] Acetaminophen may be used for fever and discomfort while NSAIDs such as ibuprofen and aspirin are avoided as they might aggravate the risk of bleeding.[24] Blood transfusion is initiated early in patients presenting with unstable vital signs in the face of a decreasing hematocrit, rather than waiting for the hemoglobin concentration to decrease to some predetermined "transfusion trigger" level.[25] Packed red blood cells or whole blood are recommended, while platelets and fresh frozen plasma are usually not.[25] During the recovery phase intravenous fluids are discontinued to prevent a state of fluid overload.[4] If fluid overload occurs and vital signs are stable, stopping further fluid may be all that is needed.[25] If a person is outside of the critical phase, a loop diuretic such as furosemide may be used to eliminate excess fluid from the circulation.[25] Epidemiology See also: Dengue fever outbreaks Dengue distribution in 2006. Red: Epidemic dengue and Ae. aegypti Aqua: Just Ae. aegypti. Most people with dengue recover without any ongoing problems.[19] The mortality is 1–5% without treatment,[4] and less than 1% with adequate treatment.[19] Severe disease carries a mortality of 26%.[4] Dengue is believed to infect 50 to 100 million people worldwide a year with half a million life-threatening infections requiring hospitalization,[1] resulting in approximately 12,500–25,000 deaths.[5][26] The burden of disease from dengue is estimated to be similar to other childhood and tropical diseases, such as tuberculosis, at 1600 disability-adjusted life years per million population.[10] It is the most common viral disease transmitted by arthropods.[8] As a tropical disease it is deemed only second in importance to malaria.[4] It is endemic in more than 110 countries.[4] The World Health Organization counts dengue as one of sixteen neglected tropical diseases.[27] The incidence of dengue increased 30 fold between 1960 and 2010.[28] This increase is believed to be due to a combination of urbanization, population growth, increased international travel, and global warming.[1] The geographical distribution is around the equator with 70% of the total 2.5 billion people living in endemic areas from Asia and the Pacific.[28] In the United States, the rate of dengue infection among those who return from an endemic area with a fever is 2.9–8.0%,[13] and it is the second most common infection after malaria to be diagnosed in this group.[6] Until 2003, dengue was classified as a potential bioterrorism agent, but subsequent reports removed this classification as it was deemed too difficult to transfer and only caused hemorrhagic fever in a relatively small proportion of people.[29] History Etymology The origins of the word "dengue" are not clear, but one theory is that it is derived from the Swahili phrase Ka-dinga pepo, which describes the disease as being caused by an evil spirit.[30] The Swahili word dinga may possibly have its origin in the Spanish word dengue, meaning fastidious or careful, which would describe the gait of a person suffering the bone pain of dengue fever.[31] However, it is possible that the use of the Spanish word derived from the similar-sounding Swahili.[30] Slaves in the West Indies having contracted dengue were said to have the posture and gait of a dandy, and the disease was known as "dandy fever".[32][33] The term "break-bone fever" was first applied by physician and Founding Father Benjamin Rush, in a 1789 report of the 1780 epidemic in Philadelphia. In the report he uses primarily the more formal term "bilious remitting fever".[29][34] The term dengue fever came into general use only after 1828.[33] Other historical terms include "breakheart fever" and "la dengue".[33] Terms for severe disease include "infectious thrombocytopenic purpura" and "Philippine", "Thai", or "Singapore hemorrhagic fever".[33] Discovery The first record of a case of probable dengue fever is in a Chinese medical encyclopedia from the Jin Dynasty (265–420 AD) which referred to a "water poison" associated with flying insects.[30][35] There have been descriptions of epidemics in the 17th century, but the most plausible early reports of dengue epidemics are from 1779 and 1780, when an epidemic swept Asia, Africa and North America.[35] From that time until 1940, epidemics were infrequent.[35] In 1906, transmission by the Aedes mosquitoes was confirmed, and in 1907 dengue was the second disease (after yellow fever) that was shown to be caused by a virus.[36] Further investigations by John Burton Cleland and Joseph Franklin Siler completed the basic understanding of dengue transmission.[36] The marked rise of spread of dengue during and after the Second World War has been attributed to ecologic disruption. The same trends also led to the spread of different serotypes of the disease to different areas, and the emergence of dengue hemorrhagic fever, which was first reported in the Philippines in 1953. In the 1970s, it became a major cause of child mortality. Around the same time it emerged in the Pacific and the Americas.[35] Dengue hemorrhagic fever and dengue shock syndrome were first noted in Middle and Southern America in 1981, as DENV-2 was contracted by people who had previously been infected with DENV-1 several years earlier.[9] Research Current research efforts to prevent and treat dengue have included different means of vector control,[37] vaccine development, and antiviral drugs.[23] With regards to vector control, a number of novel methods have been used to reduce mosquito numbers with some success including the placement of the fish Poecilia reticulata or copepods in standing water to eat the mosquito larva.[37] There are ongoing programs working on a dengue vaccine to cover all four serotypes.[23] One of the concerns is that a vaccine may increase the risk of severe disease through antibody-dependent enhancement.[38] The ideal vaccine is safe, effective after one or two injections, covers all serotypes, does not contribute to ADE, is easily transported and stored, and is both affordable and cost-effective.[38] A number of vaccines are currently undergoing testing.[10][29][38] It is hoped that the first products will be commercially available by 2015.[23] Apart from attempts to control the spread of the Aedes mosquito and work to develop a vaccine against dengue, there are ongoing efforts to develop antiviral drugs that might be used to treat attacks of dengue fever and prevent severe complications.[39][40] Discovery of the structure of the viral proteins may aid the development of effective drugs.[40] There are several plausible targets. The first approach is inhibition of the viral RNA-dependent RNA polymerase (coded by NS5), which copies the viral genetic material, with nucleoside analogs. Secondly, it may be possible to develop specific inhibitors of the viral protease (coded by NS3), which splices viral proteins.[41] Finally, it may be possible to develop entry inhibitors, which stop the virus entering cells, or inhibitors of the 5' capping process, which is required for viral replication.[39] Notes ^ a b c d e f g h i j k l m Whitehorn J, Farrar J (2010). "Dengue". Br. Med. Bull. 95: 161–73. doi:10.1093/bmb/ldq019. PMID 20616106. ^ a b c d e f g WHO (2009), pp. 14–16 ^ Gubler (2010), p. 379 ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa Ranjit S, Kissoon N (July 2010). "Dengue hemorrhagic fever and shock syndromes". Pediatr. Crit. Care Med. 12 (1): 90–100. doi:10.1097/PCC.0b013e3181e911a7. PMID 20639791. ^ a b c d e f Varatharaj A (2010). "Encephalitis in the clinical spectrum of dengue infection". Neurol. India 58 (4): 585–91. doi:10.4103/0028-3886.68655. PMID 20739797. ^ a b c d e f g h Chen LH, Wilson ME (October 2010). "Dengue and chikungunya infections in travelers". Curr. Opin. Infect. Dis. 23 (5): 438–44. doi:10.1097/QCO.0b013e32833c1d16. PMID 20581669. ^ a b c d e f g h i j k l WHO (2009), pp. 25–27 ^ a b c d e f g h i j Rodenhuis-Zybert IA, Wilschut J, Smit JM (August 2010). "Dengue virus life cycle: viral and host factors modulating infectivity". Cell. Mol. Life Sci. 67 (16): 2773–86. doi:10.1007/s00018-010-0357-z. PMID 20372965. ^ a b c d e Gould EA, Solomon T (February 2008). "Pathogenic flaviviruses". The Lancet 371 (9611): 500–9. doi:10.1016/S0140-6736(08)60238-X. PMID 18262042. ^ a b c d e f g h i j k l m Guzman MG, Halstead SB, Artsob H, et al. (December 2010). "Dengue: a continuing global threat". Nat. Rev. Microbiol. 8 (12 Suppl): S7–S16. doi:10.1038/nrmicro2460. PMID 21079655. ^ a b c d e f WHO (2009), pp. 59–60 ^ "Vector-Borne Viral Infections". World Health Organization. Retrieved 17 January 2011. ^ a b c d Center for Disease Control and Prevention. "Chapter 5 – Dengue Fever (DF) and Dengue Hemorrhagic Fever (DHF)". 2010 Yellow Book. Retrieved 2010-12-23. ^ Gubler (2010), pp. 377–78 ^ Wilder-Smith A, Chen LH, Massad E, Wilson ME (January 2009). "Threat of dengue to blood safety in dengue-endemic countries". Emerg. Infect. Dis. 15 (1): 8–11. doi:10.3201/eid1501.071097. PMC 2660677. PMID 19116042. ^ Stramer SL, Hollinger FB, Katz LM, et al. (August 2009). "Emerging infectious disease agents and their potential threat to transfusion safety". Transfusion 49 Suppl 2: 1S–29S. doi:10.1111/j.1537-2995.2009.02279.x. PMID 19686562. ^ Teo D, Ng LC, Lam S (April 2009). "Is dengue a threat to the blood supply?". Transfus Med 19 (2): 66–77. doi:10.1111/j.1365-3148.2009.00916.x. PMC 2713854. PMID 19392949. ^ a b c d e Martina BE, Koraka P, Osterhaus AD (October 2009). "Dengue virus pathogenesis: an integrated view". Clin. Microbiol. Rev. 22 (4): 564–81. doi:10.1128/CMR.00035-09. PMC 2772360. PMID 19822889. ^ a b c d e f g h WHO (2009), pp. 10–11 ^ a b c WHO (1997). "Chapter 2: clinical diagnosis". Dengue haemorrhagic fever: diagnosis, treatment, prevention and control (2nd ed.). Geneva: World Health Organization.. pp. 12–23. ISBN 9241545003. ^ a b WHO (2009), pp. 90–95 ^ a b Gubler (2010), p. 380 ^ a b c d WHO (2009), p. 137 ^ a b c WHO (2009), pp. 32–37 ^ a b c d WHO (2009), pp. 40–43 ^ WHO media centre (March 2009). "Dengue and dengue haemorrhagic fever". World Health Organization. Retrieved 2010-12-27. ^ Neglected Tropical Diseases. "Diseases covered by NTD Department". World Health Organization. Retrieved 2010-12-27. ^ a b WHO (2009), p. 3 ^ a b c Barrett AD, Stanberry LR (2009). Vaccines for biodefense and emerging and neglected diseases. San Diego: Academic. pp. 287–323. ISBN 0-12-369408-6. ^ a b c Anonymous (2006). "Etymologia: dengue". Emerg. Infec. Dis. 12 (6): 893. ^ Harper D (2001). "Etymology: dengue". Online Etymology Dictionary. Retrieved 2008-10-05. ^ Anonymous (1998-06-15). "Definition of Dandy fever". MedicineNet.com. Retrieved 2010-12-25. ^ a b c d Halstead SB (2008). Dengue (Tropical Medicine: Science and Practice). River Edge, N.J: Imperial College Press. pp. 1–10. ISBN 1-84816-228-6. ^ Rush AB (1789). "An account of the bilious remitting fever, as it appeared in Philadelphia in the summer and autumn of the year 1780". Medical enquiries and observations. Philadelphia, Pa.: Prichard and Hall. pp. 104–117. ^ a b c d Gubler DJ (July 1998). "Dengue and dengue hemorrhagic fever". Clin. Microbiol. Rev. 11 (3): 480–96. PMC 88892. PMID 9665979. ^ a b Henchal EA, Putnak JR (October 1990). "The dengue viruses". Clin. Microbiol. Rev. 3 (4): 376–96. PMC 358169. PMID 2224837. ^ a b WHO (2009), p. 71 ^ a b c Webster DP, Farrar J, Rowland-Jones S (November 2009). "Progress towards a dengue vaccine". Lancet Infect Dis 9 (11): 678–87. doi:10.1016/S1473-3099(09)70254-3. PMID 19850226. ^ a b Sampath A, Padmanabhan R (January 2009). "Molecular targets for flavivirus drug discovery". Antiviral Res. 81 (1): 6–15. doi:10.1016/j.antiviral.2008.08.004. PMC 2647018. PMID 18796313. ^ a b Noble CG, Chen YL, Dong H, et al. (March 2010). "Strategies for development of Dengue virus inhibitors". Antiviral Res. 85 (3): 450–62. doi:10.1016/j.antiviral.2009.12.011. PMID 20060421. ^ Tomlinson SM, Malmstrom RD, Watowich SJ (June 2009). "New approaches to structure-based discovery of dengue protease inhibitors". Infectious Disorders Drug Targets 9 (3): 327–43. PMID 19519486. References Gubler DJ (2010). "Dengue viruses". In Mahy BWJ, Van Regenmortel MHV. Desk Encyclopedia of Human and Medical Virology. Boston: Academic Press. ISBN 0-12-375147-0. WHO (2009). Dengue Guidelines for Diagnosis, Treatment, Prevention and Control. World Health Organization. ISBN 9241547871. External links Find more about Dengue fever on Wikipedia's sister projects: Definitions from Wiktionary Images and media from Commons Learning resources from Wikiversity News stories from Wikinews Quotations from Wikiquote Source texts from Wikisource Textbooks from Wikibooks Dengue fever at the Open Directory Project "Dengue". WHO. Retrieved 2010-12-24. "Dengue". US Centers for Disease Control and Prevention. Retrieved 2010-12-24. "Dengue fever". UK Health Protection Agency. Retrieved 2010-12-24. [hide]v · d · eZoonotic viral diseases (A80–B34, 042–079) Arthropod/ (arbovirus) Mosquito Bunyaviridae Arbovirus encephalitis: La Crosse encephalitis (LCV) · California encephalitis (CEV) Viral hemorrhagic fever: Rift Valley fever (RVFV) Flaviviridae Arbovirus encephalitis: Japanese encephalitis (JEV) · Australian encephalitis (MVEV, KUNV) · St. Louis encephalitis (SLEV) · West Nile fever (WNV) Viral hemorrhagic fever: Dengue fever (DV) other: Yellow fever (YFV) · Zika fever Togaviridae Arbovirus encephalitis: Eastern equine encephalomyelitis (EEEV) · Western equine encephalomyelitis (WEEV) · Venezuelan equine encephalomyelitis (VEEV) other: Chikungunya (CV) · O'Nyong-nyong fever (OV) · Ross River fever (RRV) Tick Bunyaviridae Viral hemorrhagic fever: Crimean-Congo hemorrhagic fever (CCHFV) Flaviviridae Arbovirus encephalitis: Tick-borne encephalitis (TBEV) · Powassan encephalitis (PV) · Deer tick virus encephalitis (DTV) Viral hemorrhagic fever: Omsk hemorrhagic fever (OHFV) · Kyasanur forest disease (KFDV/Alkhurma virus)) · Langat virus (LGTV) Reoviridae Colorado tick fever (CTFV) Mammal Rodent (Robovirus) Arenaviridae Viral hemorrhagic fever: Lassa fever (LV) · Venezuelan hemorrhagic fever (Guanarito virus) · Argentine hemorrhagic fever (Junin virus) · Bolivian hemorrhagic fever (Machupo virus) · Lujo virus Bunyaviridae Puumala virus · Andes virus · Sin Nombre virus · Hantavirus (HV) Bat Filoviridae VHF: Ebola hemorrhagic fever · Marburg hemorrhagic fever Rhabdoviridae Australian bat lyssavirus · Mokola virus · Duvenhage virus · Lagos bat virus · Chandipura virus(sandfly) Bornaviridae Menangle · Henipavirus · Borna disease (Borna disease virus) Multiple Rhabdoviridae Rabies (RV) M: VIR virs(prot)/clss cutn/syst (hppv/hiva, infl/zost/zoon)/epon drugJ(dnaa, rnaa, rtva, vacc) Retrieved from "http://en.wikipedia.org/wiki/Dengue_fever"